Абдуллаева Элиза Хосровна

Особенности течения глаукомного процесса в постковидном периоде

3.1.5. – Офтальмология

Автореферат

диссертации на соискание ученой степени кандидата медицинских наук

Диссертационная работа выполнена в Федеральном государственном бюджетном научном учреждении «Научно-исследовательский институт глазных болезней имени М.М. Краснова».

Научный руководитель:

доктор медицинских наук, профессор

Еричев Валерий Петрович

Официальные оппоненты:

Алексеев Игорь Борисович, доктор медицинских наук, профессор, ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения РФ, профессор кафедры офтальмологии

Лоскутов Игорь Анатольевич, доктор медицинских наук, ГБУЗ МО «Московский областной научно-исследовательский клинический институт имени М.Ф. Владимирского», заведующий отделением офтальмологии

Ведущая организация:

Федеральное государственное автономное образовательное учреждение высшего образования "Российский национальный исследовательский медицинский университет имени Н.И. Пирогова" Министерства здравоохранения РФ

Защита состоится 9 октября 2023 года в 14:00 на заседании диссертационного совета 24.1.174.01 при Федеральном государственном бюджетном научном учреждении «Научно-исследовательский институт глазных болезней имени М.М. Краснова» по адресу: 119021, г. Москва, ул. Россолимо, д. 11, кор. А,Б

С диссертацией можно ознакомиться на сайте <u>www.niigb.ru</u> Федерального государственного бюджетного учреждения «Научно-исследовательский институт глазных болезней имени М.М. Краснова »

Автореферат разослан «»	2023 года.	
Ученый секретарь диссертационного совета		
доктор медицинских наук	М.Н. Иванов	3

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы

Проблема COVID-19 в офтальмологии остается важной и актуальной, так как отсутствует полное понимание патогенеза глазной симптоматики, степени персистенции коронавируса (SARS-CoV-2) в тканях глаза и обратимости вызываемых изменений (Yachou Y. et al., 2020).

Вследствие большой важности этой проблемы, механизм дегенеративного воздействия COVID-19 на нервную ткань активно изучается с самого начала пандемии. Предположение о возможности инвазии SARS-CoV-2 в ЦНС было выдвинуто по аналогии с нейротропностью других коронавирусов, в основном, SARS-CoV-1, MERS-CoV и OC43 (Bergmann C. et al., 2006).

В контексте изучения нейротропного действия COVID-19 рассматривается возможность его влияния на глаз как на орган, богатый нервной тканью, а именно, на нервные волокна роговицы (HBP), сетчатку и зрительный нерв (Iadecola C. et al., 2020).

Кроме возможности поражения переднего отрезка глаза виде конъюнктивитов и кератитов, что широко описано в литературе, рассматривается возможность нейротропного действия коронавируса на также организм. Сообщается, что глиальные клетки и нейроны, в дополнение к эндотелиальным и артериальным гладкомышечным клеткам в головном мозге, экспрессируют рецепторы ACE2, что делает их потенциальными мишенями для SARS-CoV-2 (Zou X., 2020). Такие данные указывают на потенциальное нейротропное участие SARS-CoV-2 (Baig A.vet al, 2020). Поэтому очень важно исследовать его нейротропные эффекты и понять лежащие в их основе механизмы. Учитывая способность SARS-COV-2 воздействовать на нервную систему, неудивительно, что вирусное поражение может сопровождаться нейроофтальмологическими проявлениями (Tisdale A., 2020).

Также важной задачей представляется оценка роли коронавируса в патогенезе осложненного течения послеоперационного периода у больных глаукомой, учитывая его потенциальное нейротропное действие.

Все это обуславливает актуальность дальнейшего изучения влияния инфекционных заболеваний, в первую очередь, COVID-19 инфекции, на течение глаукомы и послеоперационный период АГО.

Цель настоящего исследования: изучить возможное влияние коронавирусной инфекции на некоторые особенности течения глаукомного процесса.

Задачи исследования:

- 1. На основании базовых и специальных методов исследования, включая конфокальную микроскопию, провести сравнительный анализ структурнофункциональных изменений у больных глаукомой, перенесших COVID-19.
- 2. Изучить частоту и характер ранних послеоперационных осложнений, связанных с антиглаукомными вмешательствами у пациентов, перенесших COVID-19.
- 3. На основании полученных данных определить факторы, влияющие на течение глаукомного процесса в условиях нейротропной инфекции на примере COVID-19.
- 4. Используя базовые и дополнительные методы предложить алгоритм обследования пациентов с глаукомой, перенесших COVID-19.

Основные положения диссертации, выносимые на защиту:

1. У пациентов с ПОУГ, болевших и не болевших СОVID-19, была статистически достоверная тенденция к повышению ВГД в постковидном периоде по сравнению с исходными данными. Однако прогрессирования ГОН по показателям компьютерной периметрии и ОКТ ДЗН и сетчатки в обеих подгруппах выявлено не было.

- 2. COVID-19 вызывает нейродегенеративные изменения HBP у офтальмологически здоровых пациентов.
- 3. У пациентов с глаукомой выявлены нейродегенеративные изменения НВР по данным конфокальной микроскопии, при этом эти изменения коррелируют со стадией глаукомы. Однако дополнительного усугубляющего влияния COVID-19 на НВР не выявлено.
- 4. У пациентов с глаукомой, перенесших COVID-19 в раннем послеоперационном периоде наблюдалась тенденция к избыточному рубцеванию вновь созданных путей оттока, однако достоверного статистически значимого различия с группой контроля не выявлено.

Научная новизна исследования:

- 1. Впервые проведено ретроспективное сравнительное исследование влияния COVID-19 на структурно-функциональные показатели, характеризующие течение глаукомного процесса (уровень ВГД, компьютерная периметрия, ОКТ ДЗН и сетчатки), у больных с ПОУГ в постковидном периоде по сравнению с исходными данными.
- 2. Впервые проведена оценка состояния нервных волокон суббазального слоя роговицы у здоровых, перенесших COVID-19.
- 3. Проведена дополнительная оценка состояния нервных волокон суббазального слоя роговицы у больных ПОУГ, перенесших COVID-19, по сравнению с контрольной группой.
- 4. Впервые дана оценка и изучены характер и частота ранних послеоперационных осложнений у пациентов с глаукомой, перенесших ранее COVID-19.

Теоретическая значимость работы:

- 1. Доказано нейродегенеративное влияние глаукомы на суббазальный слой НВР с его постадийным характером прогрессирования у пациентов с ПОУГ.
- 2. Выявлен нейродегенеративный характер изменений в суббазальном слое HBP у здоровых, перенесших COVID-19.

3. Оценены частота и характер ранних послеоперационных осложнений у пациентов с глаукомой, перенесших COVID-19.

Внедрение результатов работы:

Результаты настоящего исследования внедрены в лечебную и научноисследовательскую деятельность ФГБНУ «НИИ глазных болезней им. М. М. Краснова».

Методология и методы исследования

Основой диссертации является применение методов научного познания. Настоящая работа выполнена в соответствии с принципами научного исследования и исполнено в дизайне открытого комбинированного сравнительного исследования с использованием клинических, инструментальных и аналитических методов.

Степень достоверности результатов и апробация материалов исследования

Степень достоверности полученных результатов исследования определяется достаточным и репрезентативным объемом клинического материала (86 пациентов, 130 глаз), постановкой корректной цели и задачи исследования, использованием современного сертифицированного офтальмологического оборудования и статистического программного обеспечения для обработки результатов исследования.

Результаты исследования доложены и обсуждены на заседании проблемной комиссии ФГБНУ «НИИ глазных болезней» им. Краснова.

Публикации

По теме диссертации опубликовано 5 научных работ в журналах, входящих в перечень рецензируемых журналов и изданий, рекомендованных ВАК. Получен патент РФ.

Структура и объем диссертации

Диссертация изложена на 109 страницах машинописного текста и состоит из введения, обзора литературы, материалов и методов исследования, результатов исследования, заключения, выводов, практических рекомендаций, списка

сокращений, списка литературы. Диссертация содержит 10 таблиц, иллюстрирована 18 рисунками. Список литературы включает в себя 160 источников, из них 15 отечественных и 145 иностранных авторов.

СОДЕРЖАНИЕ РАБОТЫ

Материал и методы исследования:

Все исследования выполнены на базе отдела глаукомы ФГБНУ «НИИ глазных болезней им. М.М. Краснова».

Всего исследованием было охвачено 86 человек (130 глаз).

В 1-ю основную группу вошло 32 пациента (62 глаза) со стабилизированной ПОУГ І-ІІІ стадии, которые были разделены на подгруппы в зависимости от наличия перенесенной COVID-19 в анамнезе. В обеих подгруппах был проведен ретроспективный анализ таких основных клинических характеристик, как уровень ВГД, компьютерная периметрия, ОКТ ДЗН и сетчатки в доковидный и постковидный период с целью оценки течения глаукомного процесса в динамике после перенесенной коронавирусной инфекции.

В основную группу 2 вошло 40 пациентов (40 глаз) с декомпенсированной глаукомой, которым была показана плановая антиглаукомная хирургия с целью стабилизации ВГД и сохранения зрительных функций. Пациенты этой группы также в свою очередь были разделены на подгруппы в зависимости от наличия перенесенной COVID-19 в анамнезе для оценки влияния данной инфекции на частоту ранних послеоперационных осложнений.

В группу 3, выступающую в качестве контрольной, вошло 14 здоровых испытуемых, переболевших COVID-19, (28 глаз) без видимой офтальмологической патологии.

Давность заболевания не превышала полгода. Диагноз COVID-19 был подтвержден методом ПЦР.

Методы клинического исследования

С целью уточнения диагноза и оценки состояния зрительных функций всем больным проводился комплекс стандартных исследований, включавший сбор жалоб и анамнеза, определение остроты зрения с коррекцией и без, биомикроскопию переднего отрезка глаза, офтальмоскопию, гониоскопию,

статическую периметрию, оптическую пневмотонометрию, когерентную томографию диска зрительного нерва. Специальные офтальмологические методы диагностики: оптическая когерентная томография диска зрительного нерва, роговицы. Обработку конфокальная микроскопия полученных данных конфокальной микроскопии проводили, используя программное обеспечение Liner 1.2S. С помощью этой программы возможна количественная оценка структурного состояния НВР, а именно степень их извитости; программа позволяет вычислить коэффициент анизотропии направленности $(K_{\Delta L})$ И симметричности направленности (K_{sym}) HBP.

Для оценки влияния перенесенного COVID-19 на частоту и характер интраи ранних послеоперационных осложнений всем пациентам 2 основной группы в зависимости от клинической ситуации были выполнены хирургические вмешательства двух типов: СТЭ и НГСЭ. Состояние оперированного глаза оценивали на следующий день и через 7 дней после операции.

Методы статистической обработки и представления данных

Обработка полученных данных проводилась c использованием программного обеспечения IBM SPSS Statistics v.21 x64 и пакета статистического анализа Microsoft Excel 2013. Параметры представлены в формате Me (Q25%; Q75%), где Ме - медиана, а Q25% и Q75% - квартили. При сравнении нескольких независимых выборок использовался анализ для попарного сравнения двух независимых выборок - U-критерия Манна-Уитни. Критический уровень значимости при проверке статистических гипотез принимался меньшим 0,05. Проводимое исследование не противоречило принципам этического отношения к проведению исследований, разработанными Всемирной медицинской ассоциацией (World Medical Association, WMA), подтвержденных локальным комитетом.

Результаты исследования

Исследование контрольной группы

В результате исследования пациентов контрольной группы, а именно при измерении роговично-компенсированного ВГД (IOPcc = 15,0 [9,3;20,6] мм.рт.ст.) и проведении статической периметрии не было выявлено каких-либо патологических изменений (MD=0,52 [-0,9;0,8] dB, PSD=1,26 [1,05;1,59] dB, VFI=98 [97;100] %). Все исследуемые показатели офтальмологически здоровых пациентов, перенесших COVID-19, соответствовали возрастной норме.

Совокупные результаты ранее проводившихся исследований о нейродегенеративном влиянии COVID-19 на нервную систему, в том числе на HBP, позволяют предположить, что COVID-19 может обладать нейродегенеративным действием и на ганглиозные клетки сетчатки и волокна зрительного нерва.

С этой целью в контрольной группе здоровых лиц (имеющие в анамнезе COVID-19) была выполнена ОКТ. Средние показатели ОКТ (GCC, RNFL, Rim area и Сир area) соответствовали нормальным значениям (Avg.RNFL=103,04 [98,32;110,05] μ m, Rim area=1,54 [1,13;1,77] mm2, Cup area=0,47 [0,22;0,64] mm2, Avg.GCC= 93,31 [89,8;97;12] μ m). Прослеживалась характерная и зависимая от возраста динамика снижения толщины GCC (r=-0,672; p=0,005) и RNFL (r=-0,713; p=0,002).

Несмотря на отсутствие изменений по показателям уровня ВГД, компьютерной периметрии и ОКТ, использованный метод конфокальной микроскопии позволил выявить признаки роговичной нейродегенерации в 3 группе пациентов. Достоверная информация об изменениях в суббазальном слое НВР была получена благодаря проведению анализа конфокальных снимков и объективизации данных с помощью программного обеспечения Liner 1.2S.

За норму были приняты конфокальные изображения суббазального слоя НВР со следующими характеристиками: на снимках отмечается большое число волокон, НВР имеют достаточную толщину, параллельный и однонаправленный ход, наблюдалось их дихотомическое деление (рис. 1A).

Обследование здоровых лиц из группы 3, перенесших COVID-19, показало наличие патологических изменений структуры слоя НВР. Эти изменения на конфокальных снимках характеризовались уменьшением длины и диаметра НВР и нарушениями равномерности их хода. При этом нервные волокна имели «чёткообразную» структуру, наблюдалось деление волокна на отростки второго, третьего и более порядка. Отмечено увеличение количества макрофагов (клеток Лангерганса) (рис. 1Б).

Патологические изменения в суббазальном слое роговицы у добровольцев, перенесших COVID-19, свидетельствует о нейродегенеративном действии SARS-CoV-2 на HBP у лиц без фоновой офтальмопатологии.

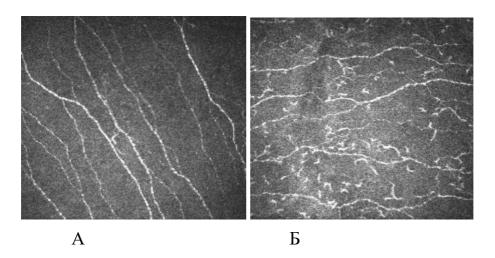


Рис. 1. А – конфокальное изображение НВР в норме; Б – конфокальное изображение НВР исследуемых контрольной группы (пациент из группы контроля через 3 мес после перенесенного COVID-19).

С целью объективизации данных конфокальной микроскопии пациентов 3 группы были также проанализированы данные, полученные при обработке снимков в программном обеспечении Liner 1.2S. Оба показателя: коэффициент анизотропии (K_{AL}) и коэффициент симметричности направленности (K_{sym}) отличались от нормальных значений (K_{AL} 2,64 [2,46;2,92], K_{sym} 0,89 [0,86;0,93]). За норму были приняты данные, полученные в ранее проведенном исследовании, где в группе здоровых лиц были получены следующие значения: $K\Delta L = 3,71 \pm 1,40$;

Кѕут 0.9 ± 0.15 [Аветисов С.Э., Новиков И.А., Махотин С.С., Сурнина 3.В. Вычисление коэффициентов анизотропии и симметричности направленности нервов роговицы на основе автоматизированного распознавания цифровых конфокальных изображений. Медицинская техника 2015; 3:23-25].

Описанные выше дегенеративные изменения нервных волокон у этих пациентов, по всей вероятности, были вызваны перенесенной коронавирусной инфекцией, что подтверждает тропность вируса к нервной ткани глаза. Примечательным является значительное увеличение количества макрофагов (12,5 [3,8;18,3]), что также подтверждает воспалительный генез указанных изменений.

Некоторым пациентам 3 группы (здоровые лица, переболевшие COVID-19) удалось выполнить исследование на более поздних сроках наблюдения (3-6 месяцев). Полученные результаты позволили отметить увеличение количества НВР, наблюдалось также их утолщение и восстановление параллельного хода НВР (рис. 2).

Такие изменения косвенно могут свидетельствовать о возможной регенераторной способности НВР в ранние сроки после перенесённой болезни. Кроме того, при количественной оценке хода и структуры НВР отмечено восстановление коэффициента $K_{\Delta L}$ и K_{sym} .

Следует отметить, что у пациентов старших возрастных групп отмечено снижение количества НВР и увеличение их извитости по сравнению с более молодыми. Это подтверждается при корреляционном анализе по методу Спирмана, где обнаружена отрицательная корреляционная связь по К Δ L (r=-0,23; p<0,05), длине основных НВР и их отростков (r=-0,31; p<0,05).

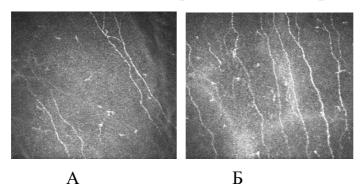


Рис. 2. А – конфокальное изображение НВР (пациент из группы контроля через 3 мес после перенесенного COVID-19); Б – конфокальное изображение НВР (пациент из группы контроля через 3 мес после перенесенного COVID-19).

Результаты исследований не оперированных пациентов с ПОУГ

Учитывая, что коронавирусная инфекция при проникновении в организм, в том числе и ткани глаза, может обладать некой нейротропной активностью, что было выявлено у офтальмологически здоровых лиц, предполагается, что у пациентов с уже имеющейся глаукомной оптической нейропатией этот вирус может усугублять течение глаукомного процесса в виде ухудшения структурнофункциональных показателей.

С этой целью были проанализированы подгруппа 1.1. (ПОУГ І-ІІІ стадий, перенесших COVID-19; 15 больных, 29 глаз); и подгруппа 1.2. (пациенты с ПОУГ І-ІІІ стадий, не болевшие COVID-19; 17 больных, 33 глаза). Во всех случаях наличие или отсутствие COVID-19 в анамнезе подтверждалось результатом проведенной ранее ПЦР.

В нашем исследовании у всех пациентов двух подгрупп был проведен ретроспективный анализ основных структурно-функциональных показателей, характеризующих течение глаукомного процесса у пациентов с ПОУГ в доковидный период и в период пандемии, а именно уровень роговично-компенсированного ВГД, данные ОКТ ДЗН и сетчатки и компьютерной периметрии.

В результате ретроспективного анализа медицинских карт пациентов, перенесших COVID-19, была выявлена статистически достоверная тенденция к субкомпенсации уровня ВГД в постковидном периоде (p=0,015) (рис.3).

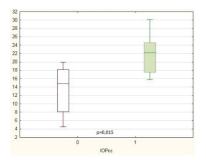


Рис. 3. Динамика уровня ВГД у пациентов подгруппы 1.1. до пандемии и после перенесенной COVID-19.

Все показатели компьютерной периметрии и ОКТ ДЗН и сетчатки соответствовали стадии ГОН. Однако отрицательной динамики после перенесенной COVID-19 в отношении прогрессирования ГОН по данным компьютерной периметрии: MD (p=0,898), PSD (p=0,609), VFI (p=0,406) и ОКТ ДЗН и сетчатки: Avg.RNFL (p=0,973), Rim area (p=0,961), Cup area (p=0,798), Avg.GCC (p=0,898) у этих пациентов выявлено не было.

В подгруппе 1.2. (не болевшие COVID-19) также была проведена оценка течения глаукомного процесса в динамике до начала и в период пандемии по показателям уровня ВГД, компьютерной периметрии и ОКТ ДЗН и сетчатки.

В подгруппе пациентов с ПОУГ, не болевших COVID-19, в период пандемии отмечались более высокие цифры ВГД по сравнению показателями в доковидный период. Средние значения ВГД статистически достоверно отличались при оценке в динамике (p=0,0268) (рис. 4). В целом у пациентов подгруппы 1.2. так же как и в подгруппе 1.1. была тенденция к субкомпенсации ВГД. Необходимо отметить, что степень нарушения компенсации ВГД в подгруппе 1.1. была значительнее.

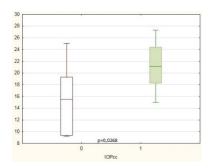


Рис. 4. Динамика уровня ВГД у пациентов подгруппы 1.2. до и в период пандемии коронавирусной инфекции.

При оценке результатов статической периметрии у этих пациентов были выявлены закономерные, типичные признаки нарушения зрительных функций по типу глаукомных (например, расширение слепого пятна, диффузное снижение светочувствительности, верхняя дугообразная скотома, назальная ступенька и т.д.). Анализ динамики показателей компьютерной периметрии в подгруппе пациентов с ПОУГ, не болевших COVID-19, не показала статистически достоверного различия по показателям MD (p=0,943), PSD (p=0,520) и VFI (p=0,886).

У всех пациентов с глаукомой, входивших в 1.2. подгруппу (пациенты с ПОУГ, не болевшие COVID-19), проведенная ОКТ выявила типичные признаки нейропатии сетчатки и ДЗН, выражавшиеся в уменьшении толщины ГКС и СНВС, снижении площади нейроретинального пояска и увеличении площади экскавации.

Статистически достоверного различия в показателях толщины GCC (p=0,720), RNFL (p=0,520), площади нейроретинального пояска (p=0,943) и экскавации (p=0,720) в период до и после начала пандемии выявлено не было.

По результатам конфокальной микроскопии в подгруппе 1.2. (пациенты с ПОУГ, не болевшие COVID-19) на снимках были выявлены значительные изменения в суббазальном слое HBP, что выражалось значительным уменьшением их количества, истончением, извитостью, прерывистость хода, нарушением дихотомического деления (рис. 5).

Показатели, полученные при обработке конфокальных снимков и данных с использованием программного обеспечения, резко отличались от возрастной нормы: средние показатели K_{AL} был значительно снижен у пациентов с ПОУГ (2,2 [2;2,7]), а K_{sym} увеличен соответственно (0,94 [0,9;0,97]). Также отмечено незначительное повышение количества макрофагальных клеток (5 [2;11,8]), что может свидетельствовать о наличии хронического нейровоспалительного процесса у пациентов с глаукомой.

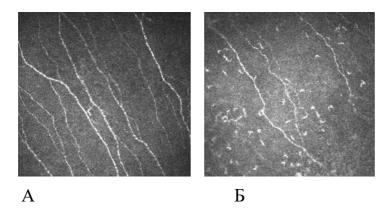


Рис. 5. Конфокальные изображения НВР: А – норма, Б – подгруппа 1.2.

При этом описанные выше изменения нарастали по мере прогрессирования глаукомной оптической нейропатии. Это подтверждается при корреляционном анализе по методу Спирмана, где обнаружена отрицательная корреляционная связь по K_{AL} (r=-0,451; p<0,05), и положительная по K_{sym} (r=0,521; p<0,05).

То есть наличие глаукомы в анамнезе является усугубляющим фактором риска развития патологических нейродегенеративных изменений в суббазальном слое HBP, при этом выраженность этих изменений зависит от стадии ГОН.

Анализ результатов обработки конфокальных снимков подгрупп 1.1. и 1.2. показал наличие патологических изменений в суббазальном слое НВР роговицы: в обеих подгруппах на конфокальных снимках отмечено снижение количества нервных волокон, их выраженная извитость, истончение, нарушение дихотомичности в сравнении со снимками здоровых, принятых за норму (рис. 6).

Статистическая обработка данных для независимых выборок с помощью U-критерия Манна-Уитни не выявила достоверных различий по показателям $K_{\Delta L}$ и Ksym в исследуемых подгруппах. Более того, коэффициент достоверности был гораздо выше статистически значимого.

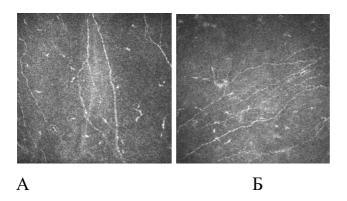


Рис.6. Конфокальные изображения НВР: А – подгруппа 1.1., Б – подгруппа 1.2.

Ранее при сравнении подгрупп здоровых и пациентов с ПОУГ был продемонстрирован характер нейродегенеративного влияния глаукомы на суббазальное нервное сплетение роговицы. Поэтому при проведении анализа результатов статистической обработки данных рассматриваемых подгрупп (пациенты с ПОУГ, болевшие и не болевшие COVID-19) мы учитывали тот факт, что основной причиной низких показателей длины и извитости у таких пациентов является глаукома. Однако наличие нейродегенеративного влияния COVID-19 на НВР у офтальмологически здоровых добровольцев нашего исследования дает COVID-19 же возможность предположить, что все может усугублять существующую при глаукоме нейродегенерацию роговицы.

По-видимому, наличие существующих нейродегенеративных изменений НВР у пациентов с глаукомой не позволяет выявить дополнительное, усугубляющее нейропатию влияние COVID-19 на НВР. Таким образом, чем выше стадия глаукомы и чем более низкие исходные показатели извитости и симметричности НВР, тем сложнее увидеть на этом фоне усиление нейродегенерации, вызванное COVID-19. Некоторые конфокальные снимки пациентов с ПОУГ, не перенесших в анамнезе COVID-19, имели даже более высокие показатели состояния НВР по сравнению с пациентами сравниваемой подгруппы.

Результаты исследований оперированных пациентов с ПОУГ

В зависимости от наличия в анамнезе перенесенного COVID-19 из пациентов с показаниями к АГО были сформированы две подгруппы: подгруппа 2.1. из больных, перенесших COVID-19 (15 пациентов, 15 глаз), подгруппа 2.2. из больных без COVID-19 в анамнезе (25 пациентов, 25 глаз).

Пациенты обеих подгрупп были с развитой или далеко зашедшей стадиями глаукомы. Из всех пациентов, отобранных для данного исследования, 9 пациентам (22% случаев) была выполнена СТЭ, 31 пациентам (78% случаев) была выполнена НГСЭ.

Во всех случаях проведения НГСЭ через месяц после хирургического вмешательства всем пациентам была проведена лазерная десцеметогониопунктура для пролонгации гипотензивного эффекта операции. При наличии признаков раннего избыточного рубцевания в зоне фильтрации десцеметогониопунктуру проводили в более ранние сроки с той же целью.

Одним из значимых факторов, который может влиять на развитие интра- и послеоперационных осложнений, является высокий уровень ВГД перед хирургическим вмешательством. В нашем исследовании уровень офтальмотонуса до операции был не компенсирован в обеих группах и составлял по подгруппам 27,8 [24,1;30,5] и 26,6 [21,2;31,9] мм рт.ст., соответственно.

К ранним послеоперационным осложнениям (до 7 дней) мы относили гифему, синдром мелкой передней камеры, ЦХО, наружную фильтрацию ВГД, офтальмогипертензию вследствие раннего послеоперационного рубцевания тканей в области зоны хирургического вмешательства, блокада зоны хирургического вмешательства корнем радужки, явления переднего пластического увеита, избыточную васкуляризацию фильтрационной подушки. Частота развития осложнений в подгруппах 2.1. и 2.2. (пациенты с COVID-19 в анамнезе и без нее, перенесшие плановую АГО) представлена в табл. 1.

Таблица 1. Частота основных осложнений по подгруппам.

		Частота осложнений, %				
	Группы	ЦХО	Гифема	Гипертензия	Локальная	
					гиперемия	
	Подгруппа	6,7	13,3	26,7	33,3	
2.1.						
	Подгруппа	8,0	12,0	24,0	28,0	
2.2.						
		p=0,854	p=0,142	p=0,09	p=0,27	

Через 7 дней после АГО средний уровень офтальмотонуса по подгруппам был 10,2 [8,5;15,5] и 12,3 [8,9;17,1] мм. рт.ст., соответственно.

В раннем послеоперационном периоде при повышении офтальмотонуса, когда уровень ВГД не соответствовал целевым значениям стадии глаукомы, предпринимали ряд мер по его нормализации. Конъюнктивально-склеральное или склеро-склеральное сращение было показанием для проведения субконъюнктивального и/или субсклерального нидлинга, при невозможности проведения нидлинга или его неэффективности возобновляли гипотензивную терапию.

У 7 пациентов (70%) с признаками раннего избыточного рубцевания потребовалось проведение нидлинга. В подгруппе 2.1. троим пациентам был выполнен успешный нидлинг (офтальмогипертензия переходила в нормотонию сразу после процедуры), однако при повторном осмотре на 7 день после операции у одного пациента также были признаки конъюнктивально-склерального сращения, что потребовало выполнения повторного нидлинга.

В контрольной подгруппе 2.2. 4-м пациентам потребовалось выполнение нидлинга в раннем послеоперационном периоде, во всех случаях манипуляция была успешной (была достигнута нормотония), при осмотре на 7 день после операции повторного нидлинга не потребовалось.

У троих пациентов обеих подрупп повышение ВГД в послеоперационном периоде было связано с блокадой угла передней камеры в зоне вмешательства

корнем радужки. В таких случаях проводили лазерную реконструктивную иридопластику (иридосинехиолизис), после чего эвакуация ВГЖ через вновь созданный путь оттока восстанавливалась.

В подгруппах не было выявлено статистически достоверной разницы в частоте развития ранних послеоперационных осложнений: локальной гиперемии (р=0,27), избыточного раннего послеоперационного рубцевания и связанной с ним офтальмогипертензии (p=0,09), ЦХО (p=0,854) и гифемы (p=0,142). Отсутствие различий в частоте развития гиперемии и раннего рубцового ответа можно объяснить наличием V пациентов, перенесших COVID-19, **затяжного** постковидного синдрома. Из литературы известно, что у таких пациентов во время заболевания происходит чрезмерный выброс воспалительных цитокинов, известный как «цитокиновый шторм», который в дальнейшем компенсаторно приводит к постинфекционной иммуносупрессии. Однако следует иметь ввиду, что большая часть осложнений у основной группы пациентов, перенесших COVID-19, приходится именно на офтальмогипертензию (у каждого 4-го пациента было отмечено повышение ВГД) и локальную гиперемию в зоне хирургического доступа, что требовало выполнения дополнительных мер по нормализации офтальмотонуса. Это не исключает возможности избыточной выработки провоспатительных факторов в ответ на хирургическое вмешательство и развития асептического воспаления у этих больных.

ЦХО, синдром мелкой передней камеры с типичной для этого осложнения клинической картиной у пациентов обеих групп заняло небольшой процент случаев: 6,7 и 9,4% соответственно. Все пациенты данного исследования имели некомпенсированный уровень офтальмотонуса в предоперационном периоде. В патогенезе возникновения рассматриваемого осложнения важную роль играет резкий перепад ВГД во время хирургического вмешательства. Однако в данном случае нужно учитывать тот факт, что подавляющему большинству пациентов была выполнена НГСЭ, которая, в отличие от операции проникающего типа, не предполагает прямого сообщения передней камеры с подконъюнктивальным пространством, что снижет риск развития ЦХО.

Геморрагические осложнения в виде гифем у пациентов обеих подгрупп встречались в небольшом проценте случаев: 8,3 и 10,9%, соответственно. Гифемой считали наличие крови или форменных элементов крови в передней камере. В подгруппе 2.1. незначительная доля гифем может быть объяснена коагулопатией у этих пашиентов В постковидном периоде, которая характеризуется гиперкоагуляцией, повышенным тромбообразованием и гиперфибриногенемией. В дополнение к вышеизложенному следует сказать, что образование гифемы характерно в основном для операций проникающего типа, что подтвердилось в нашем исследовании: большей части пациентов с гифемой в обеих подгруппах была выполнена СТЭ.

ВЫВОДЫ

- 1. Впервые на репрезентативном клиническом материале (86 пациентов, 130 глаз) с ПОУГ выполнены основные клинические структурно-функциональные исследования (ВГД, компьютерная периметрия, ОКТ ДЗН и сетчатки, конфокальная микроскопия роговицы), оценена частота и характер ранних осложнений после антиглаукоматозных операций в период отсутствия угрозы развития постковидного синдрома.
- 2. Получена сравнительная характеристика результатов клинических исследований, выполненных в работе в 2-х подгруппах пациентов с ПОУГ, болевших (1.1. подгруппа) и не болевших (1.2. подгруппа) СОVID-19, где в качестве исходных показателей использованы данные ретроспективного анализа.
- 3. В исследуемых подгруппах было выявлено достоверное повышение офтальмотонуса в постковидном периоде по сравнению с его исходными значениями. В 1.1. подгруппе уровень ВГД составил 22,2 [17,6;24,6] мм рт.ст.; в 1.2. подгруппе 21,4 [18,3;23,7] мм рт.ст. Наиболее вероятно причиной отрицательной динамики состояния ВГД в обеих группах могли стать снижение комплаентности, приверженности лечению, сложность мониторинга, связанные с эпидемиологическими проблемами в условиях пандемии.

- 4. Оценка функциональных (периметрические индексы MD, PSD и VFI по данным компьютерной периметрии) и структурных (данные оптической когерентной томографии сетчатки и зрительного нерва GCC, RNFL, Rim area, Cup area) показателей в обеих группах не было отмечено достоверных признаков прогрессирования глаукомной оптической нейропатии по сравнению с исходными данными. Такой результат может быть объяснен отсроченным характером влияния повреждающих факторов на сетчатку и зрительный нерв, что подтверждено случаями более длительного отсутствия нормализации офтальмотонуса.
- 5. Принимая во внимание нейротропный характер короновирусной инфекции, используя конфокальную микроскопию, изучено влияние COVID-19 на нервные волокна роговицы здоровых (без офтальмопатологии) и больных глаукомой. При оценке конфокальных снимков у этих пациентов выявлено наличие в обеих группах изменений в суббазальном слое НВР, характеризующихся истончением, выраженной извитостью, нарушением хода, уменьшением количества нервных волокон. Анализ данных, полученных при использовании программного обеспечения Liner 1.2S, показал снижение $K_{\Delta L}$ и увеличение K_{SVM} по сравнению с нормой. В группе здоровых, перенесших COVID-10, $K_{\Delta L}=2,64$ [2,46;2,92], Ksym = 0.89 [0,86;0,93], у больных с ПОУГ, перенесших COVID-19, K_{AL} = 2,1 [1,9;2,6], Ksym = 0,95 [0,9;0,96], у больных с ПОУГ, не болевших СОVID-19, $K_{\Delta L} = 2,2$ [2;2,7], Ksym = 0,96 [0,94;0,98]. У больных глаукомой эти изменения находились в корреляционной зависимости от стадии заболевания, что подтверждает полученные ранее выводы. При этом дополнительного усиления нейродегенеративных изменений HBP под влиянием COVID-19 у больных глаукомой не отмечено.
- 6. Анализ частоты и характера ранних осложнений после выполнения антиглаукомных операций у пациентов, перенесших COVID-19, не выявил достоверных различий по сравнению с группой контроля. Отмечена тенденция к избыточному рубцеванию вновь созданных путей оттока, выражавшаяся в повышении ВГД в раннем послеоперационном периоде, требовавшая дополнительных усилий для нормализации ВГД. Косвенным подтверждением

наличия рубцевания в зоне вмешательства служил характер фильтрационной подушки в клинико-морфологической оценке Вюрцбургской классификации.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

Одним из обязательных условий эффективного лечения первичной глаукомы является контроль за качеством терапии и течением глаукомного процесса. В условиях отсутствия квалифицированного наблюдения, проводимого клинической ситуацией, В сроки, определяемые повышаются риски прогрессирования глаукомного процесса с возможным снижением зрительных функций. Это подтверждается такими обстоятельствами, как, длительная пандемия, вызванная короновирусной инфекцией. Такая ситуация приводит не только к снижению комплаетности и приверженности лечению. Сам возбудитель, обладая нейротропностью, вызывает поражение в том числе нервных волокон роговицы.

Все это необходимо учитывать при организации всего комплекса организационно-лечебного процесса.

Список работ, опубликованных по теме диссертации

- **1.** Еричев В.П., Абдуллаева Э.Х. Герпесвирусная инфекция, глаукома и офтальмогипертензия // **Национальный журнал глаукома. 2020. Vol. 19, N 1. P. 61-68**
- **2.** Еричев В.П., Абдуллаева Э.Х., Мазурова Ю.В. Сравнительная оценка возможного влияния хронической герпесвирусной инфекции на интра- и послеоперционные осложнения у больных глаукомой // **Национальный журнал** глаукома. **2022. Vol. 21, N 1. P. 46-53**
- **3.** Еричев В.П., Абдуллаева Э.Х., Мазурова Ю.В. Частота и характер интра- и ранних послеоперационных осложнений после антиглаукомных операций // Вестник офтальмологии. 2021. Vol. 137, N 1. P. 54-59
- **4.** Еричев В.П., Сурнина З.В., Абдуллаева Э.Х. Состояние нервных волокон роговицы у пациентов с глаукомой, перенесших коронавирусную инфекцию // **Национальный журнал глаукома. 2021. Vol. 20, N 4. P. 17-25**
- **5.** Абдуллаева Э.Х. Общеофтальмологические вопросы коронавирусной инфекции // **Национальный журнал глаукома. 2021. Vol. 20, N 3. P. 102-108** Список сокращений

COVID-19 – Coronavirus disease 2019, коронавирусная инфекция 2019 года

КΔL – коэффициент анизотропии направленности

SARS-CoV-2 — Severe acute respiratory syndrome-related coronavirus 2, коронавирус-2, ассоциированный с тяжелым острым респираторным синдромом

АГО – антиглаукомная операция

БА – болезнь Альцгеймера

ВГД – внутриглазное давление

ВГЖ – внутриглазная жидкость

ВПГ -1 -2 – вирус простого герпеса, 1 типа, 2 типа

ГОН – глаукомная оптическая нейропатия

ГКС – ганглиозные клетки сетчатки

ДЗН – диск зрительного нерва

НВР – нервные волокна роговицы

НГСЭ – непроникающая глубокая склерэктомия

ОКТ – оптическая когерентная томография

ПОУГ – первичная открытоугольная глаукома

ПЦР – полимеразная цепная реакция

СНВС – слой нервных волокон сетчатки

СТЭ – синустрабекулэктомия

ЦМВ – цитомегаловирус